PRE-TEST ESTIMATORS OF THE INTERCEPT FOR A REGRESSION MODEL WITH MULTIVARIATE STUDENT-t ERRORS

نویسنده

  • Shahjahan Khan
چکیده

In presence of an uncertain prior information about the slope parameter, the estimation of the intercept of a simple regression model with a multivariate Studentt error distribution is investigated. The unrestricted, restricted and preliminary test maximum likelihood estimators are defined. The expressions for the bias and the mean square error of the three estimators are provided and the relative efficiencies are analysed. A maximin criterion is established, and graphs and tables are constructed for different number of degrees of freedom (D.F.) as well as sample sizes. These tables of relative efficiencies can be used to determine a proper choice of the significance level of the preliminary test which in turn determines the choice of the estimator.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

ESTIMATION OF PARAMETERS OF THE SIMPLE MULTIVARIATE LINEAR MODEL WITH STUDENT-t ERRORS

This paper considers estimation of the intercept and slope vector parameters of the simple multivariate linear regression model with Student-t errors in the presence of uncertain prior information on the value of the unknown slope vector. The unrestricted, restricted, preliminary test, shrinkage, and positive-rule shrinkage estimators are defined together with the expressions for the bias, quad...

متن کامل

Preliminary test almost unbiased ridge estimator in a linear regression model with multivariate Student-t errors

In this paper, the preliminary test almost unbiased ridge estimators of the regression coefficients based on the conflicting Wald (W), Likelihood ratio (LR) and Lagrangian multiplier (LM) tests in a multiple regression model with multivariate Student-t errors are introduced when it is suspected that the regression coefficients may be restricted to a subspace. The bias and quadratic risks of the...

متن کامل

Estimation of slope for linear regression model with uncertain prior information and Student-t error

This paper considers estimation of the slope parameter of the linear regression model with Student-t errors in the presence of uncertain prior information on the value of the unknown slope. Incorporating uncertain non-sample prior information with the sample data the unrestricted, restricted, preliminary test, and shrinkage estimators are defined. The performances of the estimators are compared...

متن کامل

Shrinkage estimators of intercept parameters of two simple regression models with suspected equal slopes

Estimators of the intercept parameter of a simple linear regression model involves the slope estimator. In this paper, we consider the estimation of the intercept parameters of two linear regression models with normal errors, when it is apriori suspected that the two regression lines are parallel, but in doubt. We also introduce a coefficient of distrust as a measure of degree of lack of trust ...

متن کامل

Improved estimation in multiple linear regression models with measurement error and general constraint

In this paper, we define two restricted estimators for the regression parameters in a multiple linear regression model with measurement errors when prior information for the parameters is available. We then construct two sets of improved estimators which include the preliminary test estimator, the Stein-type estimator and the positive rule Stein type estimator for both slope and intercept, and ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2007